3.5.22 \(\int \frac {(a^2+2 a b x^2+b^2 x^4)^{5/2}}{x^5} \, dx\)

Optimal. Leaf size=250 \[ \frac {b^5 x^6 \sqrt {a^2+2 a b x^2+b^2 x^4}}{6 \left (a+b x^2\right )}+\frac {5 a b^4 x^4 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 \left (a+b x^2\right )}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}-\frac {a^5 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}-\frac {5 a^4 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac {10 a^3 b^2 \log (x) \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1112, 266, 43} \begin {gather*} \frac {b^5 x^6 \sqrt {a^2+2 a b x^2+b^2 x^4}}{6 \left (a+b x^2\right )}+\frac {5 a b^4 x^4 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 \left (a+b x^2\right )}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}-\frac {5 a^4 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}-\frac {a^5 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}+\frac {10 a^3 b^2 \log (x) \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2)/x^5,x]

[Out]

-(a^5*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(4*x^4*(a + b*x^2)) - (5*a^4*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*x^2*
(a + b*x^2)) + (5*a^2*b^3*x^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(a + b*x^2) + (5*a*b^4*x^4*Sqrt[a^2 + 2*a*b*x^2
 + b^2*x^4])/(4*(a + b*x^2)) + (b^5*x^6*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(6*(a + b*x^2)) + (10*a^3*b^2*Sqrt[a^
2 + 2*a*b*x^2 + b^2*x^4]*Log[x])/(a + b*x^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}}{x^5} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \frac {\left (a b+b^2 x^2\right )^5}{x^5} \, dx}{b^4 \left (a b+b^2 x^2\right )}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \operatorname {Subst}\left (\int \frac {\left (a b+b^2 x\right )^5}{x^3} \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \operatorname {Subst}\left (\int \left (10 a^2 b^8+\frac {a^5 b^5}{x^3}+\frac {5 a^4 b^6}{x^2}+\frac {10 a^3 b^7}{x}+5 a b^9 x+b^{10} x^2\right ) \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=-\frac {a^5 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}-\frac {5 a^4 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac {5 a^2 b^3 x^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}+\frac {5 a b^4 x^4 \sqrt {a^2+2 a b x^2+b^2 x^4}}{4 \left (a+b x^2\right )}+\frac {b^5 x^6 \sqrt {a^2+2 a b x^2+b^2 x^4}}{6 \left (a+b x^2\right )}+\frac {10 a^3 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4} \log (x)}{a+b x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 85, normalized size = 0.34 \begin {gather*} \frac {\sqrt {\left (a+b x^2\right )^2} \left (-3 a^5-30 a^4 b x^2+120 a^3 b^2 x^4 \log (x)+60 a^2 b^3 x^6+15 a b^4 x^8+2 b^5 x^{10}\right )}{12 x^4 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2)/x^5,x]

[Out]

(Sqrt[(a + b*x^2)^2]*(-3*a^5 - 30*a^4*b*x^2 + 60*a^2*b^3*x^6 + 15*a*b^4*x^8 + 2*b^5*x^10 + 120*a^3*b^2*x^4*Log
[x]))/(12*x^4*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.04, size = 366, normalized size = 1.46 \begin {gather*} -\frac {5}{2} a^3 b \sqrt {b^2} \log \left (\sqrt {a^2+2 a b x^2+b^2 x^4}-a-\sqrt {b^2} x^2\right )-\frac {5}{2} a^3 b \sqrt {b^2} \log \left (\sqrt {a^2+2 a b x^2+b^2 x^4}+a-\sqrt {b^2} x^2\right )+5 a^3 b^2 \tanh ^{-1}\left (\frac {\sqrt {b^2} x^2}{a}-\frac {\sqrt {a^2+2 a b x^2+b^2 x^4}}{a}\right )+\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \left (-6 a^5 b-60 a^4 b^2 x^2+53 a^3 b^3 x^4+120 a^2 b^4 x^6+30 a b^5 x^8+4 b^6 x^{10}\right )+\sqrt {b^2} \left (6 a^6+66 a^5 b x^2+7 a^4 b^2 x^4-173 a^3 b^3 x^6-150 a^2 b^4 x^8-34 a b^5 x^{10}-4 b^6 x^{12}\right )}{24 x^4 \left (a b+b^2 x^2\right )-24 \sqrt {b^2} x^4 \sqrt {a^2+2 a b x^2+b^2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2)/x^5,x]

[Out]

(Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]*(-6*a^5*b - 60*a^4*b^2*x^2 + 53*a^3*b^3*x^4 + 120*a^2*b^4*x^6 + 30*a*b^5*x^8
+ 4*b^6*x^10) + Sqrt[b^2]*(6*a^6 + 66*a^5*b*x^2 + 7*a^4*b^2*x^4 - 173*a^3*b^3*x^6 - 150*a^2*b^4*x^8 - 34*a*b^5
*x^10 - 4*b^6*x^12))/(24*x^4*(a*b + b^2*x^2) - 24*Sqrt[b^2]*x^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + 5*a^3*b^2*A
rcTanh[(Sqrt[b^2]*x^2)/a - Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]/a] - (5*a^3*b*Sqrt[b^2]*Log[-a - Sqrt[b^2]*x^2 + Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]])/2 - (5*a^3*b*Sqrt[b^2]*Log[a - Sqrt[b^2]*x^2 + Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
])/2

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 61, normalized size = 0.24 \begin {gather*} \frac {2 \, b^{5} x^{10} + 15 \, a b^{4} x^{8} + 60 \, a^{2} b^{3} x^{6} + 120 \, a^{3} b^{2} x^{4} \log \relax (x) - 30 \, a^{4} b x^{2} - 3 \, a^{5}}{12 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^5,x, algorithm="fricas")

[Out]

1/12*(2*b^5*x^10 + 15*a*b^4*x^8 + 60*a^2*b^3*x^6 + 120*a^3*b^2*x^4*log(x) - 30*a^4*b*x^2 - 3*a^5)/x^4

________________________________________________________________________________________

giac [A]  time = 0.16, size = 127, normalized size = 0.51 \begin {gather*} \frac {1}{6} \, b^{5} x^{6} \mathrm {sgn}\left (b x^{2} + a\right ) + \frac {5}{4} \, a b^{4} x^{4} \mathrm {sgn}\left (b x^{2} + a\right ) + 5 \, a^{2} b^{3} x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + 5 \, a^{3} b^{2} \log \left (x^{2}\right ) \mathrm {sgn}\left (b x^{2} + a\right ) - \frac {30 \, a^{3} b^{2} x^{4} \mathrm {sgn}\left (b x^{2} + a\right ) + 10 \, a^{4} b x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + a^{5} \mathrm {sgn}\left (b x^{2} + a\right )}{4 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^5,x, algorithm="giac")

[Out]

1/6*b^5*x^6*sgn(b*x^2 + a) + 5/4*a*b^4*x^4*sgn(b*x^2 + a) + 5*a^2*b^3*x^2*sgn(b*x^2 + a) + 5*a^3*b^2*log(x^2)*
sgn(b*x^2 + a) - 1/4*(30*a^3*b^2*x^4*sgn(b*x^2 + a) + 10*a^4*b*x^2*sgn(b*x^2 + a) + a^5*sgn(b*x^2 + a))/x^4

________________________________________________________________________________________

maple [A]  time = 0.01, size = 82, normalized size = 0.33 \begin {gather*} \frac {\left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {5}{2}} \left (2 b^{5} x^{10}+15 a \,b^{4} x^{8}+60 a^{2} b^{3} x^{6}+120 a^{3} b^{2} x^{4} \ln \relax (x )-30 a^{4} b \,x^{2}-3 a^{5}\right )}{12 \left (b \,x^{2}+a \right )^{5} x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^5,x)

[Out]

1/12*((b*x^2+a)^2)^(5/2)*(2*b^5*x^10+15*a*b^4*x^8+60*a^2*b^3*x^6+120*a^3*b^2*ln(x)*x^4-30*a^4*b*x^2-3*a^5)/(b*
x^2+a)^5/x^4

________________________________________________________________________________________

maxima [A]  time = 1.34, size = 56, normalized size = 0.22 \begin {gather*} \frac {1}{6} \, b^{5} x^{6} + \frac {5}{4} \, a b^{4} x^{4} + 5 \, a^{2} b^{3} x^{2} + 10 \, a^{3} b^{2} \log \relax (x) - \frac {5 \, a^{4} b}{2 \, x^{2}} - \frac {a^{5}}{4 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(5/2)/x^5,x, algorithm="maxima")

[Out]

1/6*b^5*x^6 + 5/4*a*b^4*x^4 + 5*a^2*b^3*x^2 + 10*a^3*b^2*log(x) - 5/2*a^4*b/x^2 - 1/4*a^5/x^4

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{5/2}}{x^5} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2)/x^5,x)

[Out]

int((a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2)/x^5, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {5}{2}}}{x^{5}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**4+2*a*b*x**2+a**2)**(5/2)/x**5,x)

[Out]

Integral(((a + b*x**2)**2)**(5/2)/x**5, x)

________________________________________________________________________________________